Canonical rational equivalence of intersections of divisors

نویسنده

  • Andrew Kresch
چکیده

We consider the operation of intersecting with a locally principal Cartier divisor (i.e., a Cartier divisor which is principal on some neighborhood of its support). We describe this operation explicitly on the level of cycles and rational equivalences and as a corollary obtain a formula for rational equivalence between intersections of two locally principal Cartier divisors. Such canonical rational equivalence applies quite naturally to the setting of algebraic stacks. We present two applications: (i) a simplification of the development of Fulton-MacPherson-style intersection theory on Deligne-Mumford stacks, and (ii) invariance of a key rational equivalence under a certain group action (which is used in developing the theory of virtual fundamental classes via intrinsic normal cones). DOI: Canonical rational equivalence of intersections of divisors Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: http://doi.org/10.5167/uzh-22142 Accepted Version Originally published at: Kresch, A (1999). Canonical rational equivalence of intersections of divisors. Inventiones Mathematicae, 136(3):483-496. DOI: Canonical rational equivalence of intersections of divisors ar X iv :a lg -g eo m /9 71 00 11 v2 4 D ec 1 99 7 Canonical rational equivalence of intersections of divisors

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Tangent Cones at Double points of Prym-Canonical Divisors of Curves of genus 7

Let η be a line bundle on a smooth curve X with η^2=0 such that π_η, the double covering induced by η is an etale morphism. Assume also that X_η be the Prym-canonical model of X associated to K_X.η and Q is a rank 4 quadric containing X_η. After stablishing the projective normality of the prym-canonical models of curves X with Clifford index 2, we obtain in this paper a sufficient condition for...

متن کامل

Bifurcations, Intersections, and Heights

In this article, we prove the equivalence of dynamical stability, preperiodicity, and canonical height 0, for algebraic families of rational maps ft : P(C)→ P(C), parameterized by t in a quasi-projective complex variety. We use this to prove one implication in the if-and-only-if statement of [BD2, Conjecture 1.10] on unlikely intersections in the moduli space of rational maps; we present the co...

متن کامل

K-Theory and Intersection Theory

2.1 Dimension and codimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 Dimension relative to a base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4 Cartier divisors . . . . . . . . . . . . . . . . . . . . . . . . . . . ...

متن کامل

N ov 2 00 3 Fourier - Mukai transforms between canonical divisors , and its application to describing Fourier - Mukai partners

Let X be a smooth 3-fold whose kodaira dimension is positive. The main purpose of this paper is to investigate the set of smooth projective varieties Y whose derived categories of coherent sheaves are equivalent to that of X as triangulated categories. If there exists an equivalence Φ: D(X)→ D(Y ) we can compare derived categories of canonical divisors of X and Y , and this gives an inductive t...

متن کامل

The Canonical Strip Phenomenon for Complete Intersections in Homogeneous Spaces

We show that a refined version of Golyshev’s canonical strip hypothesis does hold for the Hilbert polynomials of complete intersections in rational homogeneous spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997